
Week 14 – Friday

 What did we talk about last time?
 Review up to Exam 2
 Networking

▪ Application
▪ Transport
▪ Internet
▪ Link
▪ Physical

 Socket programming
 Peer-to-peer networks
 HTTP
 TCP vs. UDP
 Network security

▪ CIA
▪ Symmetric and public key cryptography
▪ Cryptographic hash functions

 Final exam will be in this room:
 Wednesday, April 30, 2025
 8:00 – 10:00 a.m.
 50% longer than previous exams, but you have 100% more time

 Mostly short answer questions
 One or two matching questions
 A couple of debugging questions
 A couple of programming questions

 Many processes can run concurrently
 Each one executes independently
 Each process has its own memory layout

 Many threads can also run concurrently
 Each one executes independently
 Each thread has its own stack to keep track of its function calls
 But all threads within a process share code, data, heap, and kernel

segments
 Just as we used fork() to spawn new processes, there are

libraries to spawn new threads within a process and coordinate
them

 Using threads allows for more modular software since threads
can call the same functions within a program

 Threads can be more efficient since there's no context switch
needed for different threads to interact

 Some models of programming like GUIs depend on threads so
that one unit of code needs can react to an action taken
elsewhere

 Since threads share memory, there's no need for IPC libraries

 Threads are less isolated from each other than separate
processes

 Consequences:
 A thread crashing from a segmentation fault will kill the entire

process, including the other threads
 Bugs called race conditions occur, where the behavior of the

program is different depending on which thread executed first

 Race conditions are a central problem with threads
 Thread scheduling is non-deterministic
 It's often impossible to predict when the statements from one thread

are going to be executed with respect to those in another thread
 If the statements modify the same memory, the results can be

inconsistent
 One of the most frustrating issues with race conditions is that

they can occur rarely
 This means that you can run your program 1,000 times with no

problems, only to crash badly on time 1,001

 A critical section is a series of statements that must be executed
atomically to get the right result

 Atomic execution means that all the statements happen as if they
happened at once, without other statements from other threads
interfering

 Even statements that look atomic like i++ are actually several
different operations in assembly language

movq _globalvar(%rip), %rsi # copy from memory into %rsi register
addq $1, %rsi # increment the value in the register
movq %rsi, _globalvar(%rip) # store the result back into memory

 Consider two threads that share an int variable called
global that is initially set to 0:

 What are the largest and smallest values that global could
have after these threads run to completion?

for (int i = 0; i < 200; ++i)
++global;

Thread A

for (int j = 0; j < 300; ++j)
++global;

Thread B

 Many functions are thread safe, meaning that they can be
called by many threads at the same time and still give the
right answers

 Other functions are not thread safe
 Examples: rand() and strtok()

 The usual reason that functions are not thread safe is because
they contain static local variables

 Because these variables are shared by all threads, they can
become corrupted

 Just as we could create a new process with fork(), there are libraries for
making new threads

 POSIX threads (also called pthreads) are perhaps the most widely used
thread library
 Windows (of course) has its own threading library, though people have built

POSIX-like libraries on top of it
 Key POSIX concepts
 Creating a thread starts it running
 A thread can exit, stopping its running
 Joining a thread means waiting for a thread to finish (and potentially getting its

result)
 We keep track of processes with an ID of type pid_t, but we keep track of

threads with an ID of type pthread_t

 Here are POSIX functions mapping to concepts from the previous slide

 Create a new thread (not as bad as it looks)

 Exit from the current thread (giving a pointer to the result, if any)

 Join a thread (getting a pointer to its result, if any)

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit (void *value_ptr);

void pthread_join (pthread_t thread, void *value_ptr);

 Creating a thread is the most complicated function, partly
because it takes a function pointer and potentially arguments

 thread is a pointer to a pthread_t that will get filled in with the
thread's ID
 attr is a pointer to possible thread attributes (often left NULL)
 start_routine is a pointer to a function that takes a void* and

returns a void*
 arg is a pointer to arguments, NULL if no arguments needed

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

#include <stdio.h>
#include <pthread.h> // POSIX thread library
#include <assert.h>

void *
start_thread (void *args) // Function to start thread with
{
printf ("Hello from thread!\n");
pthread_exit (NULL);

}

int
main (int argc, char **argv)
{
pthread_t child_thread;

// Create new thread with function start_thread
assert (pthread_create (&child_thread, NULL, start_thread, NULL) == 0);

pthread_join (child_thread, NULL); // Wait for other thread to finish
pthread_exit (NULL); // main() exits like any other thread

}

 Passing in a garbage pthread_t* instead of the address of
a real pthread_t

 Calling the threading function (with parentheses) instead of
passing a function pointer in

 Joining with a pthread_t* instead of a pthread_t

pthread_t *thread; // No!

pthread_create (thread, NULL, start (), NULL); // No!

pthread_join (thread, NULL); // No!

 Passing arguments to threads is tricky
 Passing addresses to objects on the stack is dangerous in case the

function creating the threads returns
 Passing pointers to the same object to multiple threads can cause

problems if they fight over it
 There are no timing guarantees over which thread will run when

 On most modern machines, a pointer is either 32 bits or 64 bits
 An int is usually 32 bits
 We can cast an int to a pointer and pass that to the thread
 The thread will then cast the pointer back to an int
 Since the size of an int is almost always less than a pointer, we

don't lose any information
 It's icky, but it allows us to pass simple values like a char, short,

or int
 Both floating-point types are harder since they have to be tricked into

behaving like integers (which pointers fundamentally are)
 And double is risky since it needs a 64-bit pointer to hold it all

void * child_thread (void *args)
{
int value = (int) args; // Now, I pretend it's an int!
printf ("I'm a thread with value: %d\n", value);
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t threads[10]; // Array to hold thread IDs

// Start up those threads, pretending ints are pointers
for (int i = 0; i < 10; i++)
pthread_create (&threads[i], NULL, child_thread, (void*)i);

for (int i = 0; i < 10; i++)
pthread_join(threads[i], NULL);

pthread_exit (NULL);
}

 To pass multiple arguments, they're often grouped in a struct
 Remember that threads all have their own stacks
 Thus, we need to pass in a struct that has been dynamically

allocated on the heap (which is shared)
 Also, any pointers that struct contains should point at memory that

isn't on the stack

struct thread_args
{
int value;
const char* string;

};

int main (int argc, char **argv)
{
pthread_t thread;
struct thread_args* args = malloc(sizeof(struct thread_args));
args->value = 42;
args->string = "wombat";

// Thread casts void* to struct thread_args* when it gets it
pthread_create (&thread, NULL, child_thread, args);

pthread_join(thread, NULL);
pthread_exit (NULL);

}

 A common model for threads is for them to go and perform
some work

 After the work is done, they need to give back the answer
 There are three ways to do this:

1. Store the answer back into the dynamically allocated struct passed
in for its arguments

2. Use the hack like before to return a "pointer" through the join that's
actually an int

3. Return a pointer through the join to a dynamically allocated struct
containing the answer

 Now you have all the tools needed to create, run, and join threads
 But you don't have any tools to avoid the problem of race conditions
 Synchronization is used to coordinate between threads, often by

enforcing critical sections, sections of code that only one thread can be
executing at a time

 Common synchronization tools:
 Locks (mutexes)
 Semaphores
 Barriers
 Condition variables

 If used incorrectly, however, synchronization tools can lead to other
problems such as deadlock and livelock

 The following are common examples of synchronization:
 Multiple threads share a data structure, but only one can write to it at

a time
 Only so many threads can access a shared resource to avoid

slowdowns
 Certain events need to happen in a certain order
 Some calculations must be done before an action can be taken

 Performing synchronization so that the result is correct while
avoiding performance penalties is challenging

 Recall that a critical section is a section of code that it's safe
for only a single thread to be executing

 Often this is because non-atomic memory accesses (such as
reading a value, doing calculations, and then writing back to
memory) can get inconsistent results if more than one thread
is executing them concurrently

 A common use of synchronization tools is to block threads
trying to access a critical section if a thread is already
executing it

 A key synchronization tool is called a lock (or a mutex, short
for mutual exclusion)

 Critical sections can be protected by a lock
 First code acquires the lock
 Then it performs the code in the critical section
 Then it releases the lock

 For POSIX threads, lock functionality is provided by several
mutex functions that operate on pthread_mutex_t
objects

 Mutual exclusion
 Locks start unlocked
 Only one thread can acquire a lock at a time
 No other thread can acquire a lock until it's been released

 Non-preemption
 A lock must be voluntarily released by the thread that acquired it

 Atomic operations
 Acquire and release are atomic operations

 Blocking acquires
 If a thread tries to acquire a lock, it's blocked and added to the queue
 When the thread holding the lock releases it, only one thread acquires it

 Create a mutex with the specified attributes

 Destroy an existing mutex

 Acquire a mutex, blocking until you succeed

 Try to acquire a mutex, returning non-zero if another thread has the mutex

 Release the mutex

int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_trylock (pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

 Now that you have locks that you can use to protect a critical
section, how should you use them?

 In general, you want critical sections to be short so that one
thread won't block another unnecessarily

 Nevertheless, breaking up one section of code into several
critical sections will introduce penalties because acquiring and
releasing locks isn't free

 We mentioned semaphores in the context of synchronizing
processes that shared memory

 We can use semaphores to synchronize threads as well
 Recall that we think of a semaphore as a non-negative integer

that can be incremented and decrementing atomically
 Calling sem_wait() (decrement) on a semaphore at 0 will block

until another thread calls sem_post() (increment)

 Return (and possibly create) a named semaphore, using the usual oflag and mode flags
 value determines the initial value of the semaphore (often 0)

 Block if the semaphore's value is 0, decrement after continuing

 Increment the semaphore's value, unblocking a process if the value is 0

 Close a semaphore

 Delete a semaphore

sem_t *sem_open (const char *name, int oflag,
/* mode_t mode, unsigned int value */);

int sem_wait (sem_t *sem);

int sem_post (sem_t *sem);

int sem_close (sem_t *sem);

int sem_unlink (const char *name);

 We can use semaphores to signal some event to another thread
 As in our earlier examples with semaphores, we initialize the

semaphore to 0
 The thread waiting for the event will call sem_wait() on the semaphore
 The thread signaling that the event has happened will call sem_post()
 The waiting thread will be awoken when the signaling thread posts
 If the signaling thread posts before the waiting starts waiting, it won't

have to wait

 It should be unsurprising that we can use semaphores instead of
locks (POSIX mutexes)

 To do so, we initialize the semaphore to a value of 1
 When entering a critical section, a thread waits on (downs) the semaphore
 When leaving a critical section, the thread posts on (ups) the semaphore

 The first thread reaching the critical section is allowed in because
the value is 1

 If we had initialized to 0, no threads could enter the critical section

 Semaphores can also be used for multiplexing, in which a
maximum number of threads are allowed to access a resource

 Consider a club where the bouncer only lets 100 people in
 This kind of synchronization is used less than signaling and

mutexes, but it can be useful to prevent slowdown from too many
threads using a resource

 Also, it can be used to prevent possible race conditions when
there's a fixed number of items but the threads themselves have
to select the one they want
 No more than the maximum number of threads will be allowed to do

selection

 Semaphores are a flexible tool that can be used for signaling,
mutual exclusion, and multiplexing

 The key is the initial value of the semaphore
 0 for signaling
 1 for mutual exclusion
 Greater than 1 for multiplexing

 Conceptually, the initial value of the semaphore is the
maximum number of concurrent accesses

 Sometimes a bunch of threads are working on a task that has
phases

 We want to guarantee that all threads have finished Phase 1
before moving on to Phase 2

 To guarantee this, we can use barriers
 A barrier prevents threads from continuing unless k threads have

reached it
 It's common for k to be the total number of threads
 Sometimes, however, the calculation is fine as long as at least k are done

 It's possible to do this kind of coordination with semaphores, but
it's hard to get it exactly right

 Create a barrier with the attributes given (often NULL) and the count
of threads blocked

 Free up the resources associated with a barrier

 Wait on a barrier until enough threads reach it

int pthread_barrier_init (pthread_barrier_t *barrier, const
pthread_barrierattr_t *attr, unsigned count);

int pthread_barrier_destroy (pthread_barrier_t *barrier);

int pthread_barrier_wait (pthread_barrier_t *barrier);

 We can imagine a threaded merge sort that works in this way:
 Each thread is assigned a section of the array to sort
 Each thread uses merge sort to sort that part of the array
 All threads wait on a barrier

 Then
 Even numbered threads merge together their section with the

neighboring section
 Threads that are multiples of four merge together double sections with

other double sections
 Threads that are multiples of eight merge together quadruple sections

with other quadruple sections
 …

 Each thread is assigned a section of an array and sorts it

 Since there's no overlap, each thread can work independently
 After sorting, all threads wait on a barrier to be sure that every

thread has finished sorting

Values

Threads 0 1 2 3 4 5 6 7

 Threads can't merge the same parts of the array without causing race conditions
 Half the threads merge with their neighbors

 Then, half of those merge

 And so on, until it's all merged

Values

Threads 0 2 4 6

Values

Threads 0 4

Values

Threads 0

 Semaphores are very general purpose concurrency tool, but they
have some weaknesses:
 Semaphores take thought to use correctly: Incrementing and

decrementing values don't map clearly to synchronization problems
 Different implementations of semaphores have different features
 Some systems (like macOS) don't have a full implementation of

semaphores
 Semaphores can only signal to one thread: no broadcasting
 After getting a signal, threads have to take another step (like acquiring a

lock) to get mutually exclusive access, time that can allow a race condition

 Condition variables try to overcome some weaknesses of semaphores by
tying themselves directly to a lock

 They also have the ability to broadcast, waking up all waiting threads
 Like semaphores, they still have a function to wait and a function to signal
 However, something sneaky happens with wait:
 First, the thread must acquire a lock
 Then, it calls the wait function
 If it has to wait, it releases the lock but then reacquires it when it gets woken up
 All of which happens atomically

 This allows a thread to safely check a condition and wait until it gets
signaled

 Think of a condition variable as a queue for waiting threads

 In order to avoid race conditions, we introduced several
synchronization tools:
 Locks (mutexes)
 Semaphores
 Barriers
 Condition variables

 Each of these can be misused, failing to avoid race conditions
 Likewise, each introduces overhead, slowing the system down
 But an even worse possibility is deadlock

 Deadlock occurs when the use of synchronization primitives
cause threads to get stuck so that they will never make
progress again
 A lock that never gets unlocked
 A semaphore that never gets posted on
 A barrier that is never reached by enough threads
 A condition variable that is never signaled on

 Like many concurrency problems, deadlock can occur rarely or
it can happen every time a program runs

 In the following code, deadlock is possible

struct args {
pthread_mutex_t lock_a;
pthread_mutex_t lock_b;

};

void * first (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_a); // Lock A
pthread_mutex_lock (&data->lock_b); // Then lock B
// More code (that would eventually unlock A and B)

}

void * second (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_b); // Lock B
pthread_mutex_lock (&data->lock_a); // Then lock A
// More code (that would eventually unlock A and B)

}

 The following state diagram shows the states the threads can be in:

Both
Unlocked

Second
Locked B

First Locked
A

First Locked
Both

Second
Locked Both

Deadlock

Second Unlocks BothFirst Unlocks Both

First Locks ASecond Locks B

 The two threads try to acquire locks in different orders:
 First tries to get lock A followed by lock B
 Second tries to get lock B followed by lock A

 If they tried to get the locks in the same order, we would never
have this problem

 Even so, real situations are more complex
 Threads might need to acquire a number of locks for a

number of resources
 The order might be hard to predict ahead of time

 Four conditions are needed for deadlock to
be possible:
1. Mutual exclusion: Once a resource has been

acquired, no other thread gets it
2. No preemption: Threads can't be made to give

up their resources
3. Hold and wait: Threads can get one resource

and keep it while trying to get others
4. Circular wait: Thread A needs a resource held

by Thread B, and Thread B needs a resource
held by Thread A (or extend to a chain of
threads)

 Conditions 1 through 3 are unavoidable, so
solutions often focus on avoiding circular
wait

 Livelock is similar to deadlock
 It's a condition where, due to bad timing, processes continue

executing code, but they never make progress beyond a
certain point
 They're acquiring resources, giving them up, and acquiring them

again, but still blocking each other
 If the system is set up in a certain way or is very unlucky,

livelock could continue indefinitely
 Livelock can also sometimes resolve

 As mentioned before, we usually concentrate on the circular
wait condition of deadlock:
 Order the resources and always acquire them in the same order
 Use timed or non-blocking versions of functions that acquire

resources, potentially causing livelock
 Limit the number of threads that can access the resources, insuring

that there's always enough resources to go around

 Signaling is a design pattern we've already discussed
 One thread needs to wait until a event has occurred
 A second thread signals the first

 POSIX thread implementation:
 Initialize a semaphore to 0
 Have the first thread call sem_wait() on the semaphore when it needs to wait
 Have a second thread call sem_post()when the event has occurred

 Because semaphores have an integer value, the scheduling of the threads
doesn't matter
 If the second thread has already signaled, the first thread will immediately

return from sem_wait()

 Unlike signaling, which unblocks a single thread, the turnstile design
pattern is used to unblock many threads when an event occurs

 POSIX implementation:
 Initialize a semaphore to 0
 Have a thread call sem_post() on the semaphore when the event occurs
 All threads that need to wait call sem_wait() followed by sem_post()
 Each thread waking up will wake up one more

 Turnstiles work similarly to the broadcast function for condition variables
 But broadcasts will only wake up those threads that are currently waiting
 Turnstiles let all threads pass through, even if they reach the sem_wait() after

the event has already happened

 In the rendezvous pattern, two threads signal that they have both
reached a specific point in execution

 POSIX implementation:
 Initialize semaphore A and semaphore B to 0
 Thread 1 calls sem_post() on semaphore A and sem_wait() on

semaphore B
 Thread 2 calls sem_post() on semaphore B and sem_wait() on

semaphore A
 Each thread will only get blocked until the other one signals
 Order matters! Flip the waits with the posts and you'll have deadlock

 For larger numbers of threads, using a barrier might be a better
approach

 Multiplexing is another design pattern we've already mentioned
 Multiplexing is useful when mutual exclusion is more restrictive than you

need, but you still want to limit the total number of threads able to
execute a section of code

 POSIX implementation:
 Initialize a semaphore to n, where n is the maximum number of concurrent

accesses you want to allow
 Each thread calls sem_wait() on the semaphore before executing the code
 Each thread calls sem_post() on the semaphore after executing the code

 This design pattern can be useful when spawning threads on a server to
handle requests
 We want to prevent too many threads from being created in order to avoid

bogging down the server

 We sometimes want to allow multiple threads of a certain kind to run code concurrently but force others to use
mutual exclusion
 Many threads that only read memory, for example, could access the memory at the same time
 But only one thread that writes memory should be allowed in

 The lightswitch design pattern allows this kind of access
 The name comes from the idea that the first person into a room turns on a lightswitch and the last person turns it off

 POSIX implementation:
 Initialize a semaphore to 1
 Initialize a counter variable to 0
 Create a lock
 Whenever a reader thread wants to read:

▪ It acquires the lock
▪ Increments the counter
▪ If the counter is 1, call sem_wait() on the semaphore
▪ Unlock the lock

 Whenever a reader thread is done reading:
▪ It acquires the lock
▪ It decrements the counter
▪ If the counter is 0, it calls sem_post() on the semaphore
▪ Unlock the lock

 Writers simply call sem_wait() to start writing and sem_post()when done

 The producer-consumer problem comes up all the time in
concurrent systems
 One or more threads is producing elements that go into a buffer
 One or more threads is consuming elements from the buffer

 A producer can't put an item into a full buffer and must block
 A consumer can't remove an item from an empty buffer and must

block
 Example:
 An OS thread is putting data into a buffer that's coming across the

network
 A user thread is trying to read data out of that buffer

 Our implementation uses a circular array (that wraps back around to the beginning)
 The following code is unsafe for two reasons:
 It doesn't check to see if the buffer is full when enqueuing or empty when dequeuing
 Changing queue data is unsafe for a multi-threaded application

void enqueue_unsafe (queue_t *queue, data_t *data)
{
// Store the data in the array and advance the index
queue->contents[queue->back++] = data;
queue->back %= queue->capacity;

}

data_t * dequeue_unsafe (queue_t *queue)
{
data_t * data = queue->contents[queue->front++];
queue->front %= queue->capacity;
return data;

}

 We could use locks and check a variable giving the total number of elements in the queue
 However, semaphores have this feature built in
 We initialize the space semaphore to the maximum size of the queue
 We initialize the items semaphore to 0

void enqueue (queue_t *queue, data_t *data, sem_t *space, sem_t *items)
{
sem_wait (space);
enqueue_unsafe (queue, data);
sem_post (items);

}

data_t * dequeue (queue_t * queue, sem_t *space, sem_t *items)
{
sem_wait (items);
data_t * data = dequeue_unsafe (queue);
sem_post (space);
return data;

}

 Unfortunately, the two semaphores aren't enough when there are multiple producers and consumers
 In that situation, two producers could both be calling enqueue_unsafe(), potentially causing a race

condition with the increment
 The solution is to one lock for producers and one lock for consumers
 We could use a single lock for both, but using two locks allows producers and consumers to modify the queue

concurrently yet safely

void enqueue (queue_t *queue, data_t *data, sem_t *space, sem_t *items, pthread_mutex_t *producer_lock)
{

sem_wait (space);
pthread_mutex_lock (producer_lock);
enqueue_unsafe (queue, data);
pthread_mutex_unlock (producer_lock);
sem_post (items);

}

data_t * dequeue (queue_t * queue, sem_t *space, sem_t *items, pthread_mutex_t *consumer_lock)
{

sem_wait (items);
pthread_mutex_lock (consumer_lock);
data_t * data = dequeue_unsafe (queue);
pthread_mutex_unlock (consumer_lock);
sem_post (space);
return data;

}

 What if we have a situation where we want to allow an
unlimited number of reader threads to read data?

 But if a single writer needs to write, no other threads can
access the data

 Changing the data can cause race conditions, but merely
reading it concurrently is fine
 And can make reading much faster!

 This is exactly the scenario we solved with lightswitches:
 Initialize a semaphore to 1
 Initialize a counter variable to 0
 Create a lock
 Whenever a reader thread wants to read:

▪ It acquires the lock
▪ Increments the counter
▪ If the counter is 1, call sem_wait() on the semaphore
▪ Unlock the lock

 Whenever a reader thread is done reading:
▪ It acquires the lock
▪ It decrements the counter
▪ If the counter is 0, it calls sem_post() on the semaphore
▪ Unlock the lock

 Writers call sem_wait() to start writing and sem_post() when done

 When a reader comes into the
room, it becomes blocked for
writers

 If more readers come in before
others leave, writers might
never get to enter

 What do we do?

 We add a turnstile for the readers
 They pass through without any problem at first

 When a writer wants to write, it waits on the reader
semaphore

 This blocks any new readers from entering

 The system starts off with its two semaphores having the following values:
 Lightswitch: 1
 Turnstile: 1

Reader 1 Enters
• Lightswitch: 0
• Turnstile: 1

Reader 2 Enters
• Lightswitch: 0
• Turnstile: 1

Writer Tries to Enter
(Blocked)
• Lightswitch: 0
• Turnstile: 0

Reader 3 Tries to
Enter (Blocked)
• Lightswitch: 0
• Turnstile: 0

Reader 1 Exits
• Lightswitch: 0
• Turnstile: 0

Reader 2 Exits
• Lightswitch: 1
• Turnstile: 0

Writer Enters
• Lightswitch: 0
• Turnstile: 1

Writer Exits
• Lightswitch: 1
• Turnstile: 1

Reader 3 Enters
• Lightswitch: 0
• Turnstile: 1

 The readers-writers problem can be extended to a problem with the
following characteristics:
 Searchers are searching for data (similar to regular readers)
 Inserters are a kind of writer that only adds data
 Deleters are a kind of writer that only removes data

 Rules:
 Searchers can be concurrent with each other and an inserter
 Inserters can be concurrent with searchers, but there can only be one inserter at

a time
 Deleters must be mutually exclusive with everyone

 You can imagine a version of this problem for concurrent accesses to
databases

 Searchers use a lightswitch as before
 Inserters use their own lightswitch but also have a lock to

prevent concurrent insertions with each other
 Deleters must wait on both lightswitches
 This solution works because a deleter can enter only when

there are no searchers or inserters

 Like our first solution for readers-writers, deleters can be starved if
searchers or inserters continue to arrive
 Never getting to run is called starvation

 We could increase fairness for this solution by adding turnstiles as
well
 One turnstile semaphore could be shared by all searcher and inserters
 When a deleter comes along, it waits on the turnstile, blocking all new

searchers and inserters from entering
 When a deleter gets access to the critical section, it posts on the turnstile,

allowing all waiting threads to get to their respective lightswitches

 A classic problem illustrating the difficulties of
concurrency is the dining philosophers problem

 Some number of philosophers sit at a round table
and only do two things:
 Think
 Eat rice

 In order to eat rice, they have to pick up two
chopsticks, one on the left and one on the right
 The book has them eat with forks, but chopsticks make

more sense for the problem
 You can eat rice with one fork, but you can't eat rice with

one chopstick
 Critically important: The numbers of chopsticks and

philosophers are equal

 We have to enforce mutual exclusion for
the chopsticks

 Two philosophers can't hold onto the
same chopstick at the same time

 It's unpredictable when each philosopher
is going to finish thinking and start
eating

 We need a solution that works no matter
what

 Let's say there are SIZE philosophers (and SIZE chopsticks)
 We can create SIZE locks, one for each chopstick
 Then, each philosopher will acquire the lock for her left chopstick

followed by the lock for her right chopstick
 In the following code, self is the index of the philosopher

void * philosopher (void * _args)
{
struct args *args = (struct args *) _args;
int self = args->self; // Philosopher index
int next = (self + 1) % SIZE;
pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
pthread_mutex_lock (args->locks[next]); // Pick up right chopstick
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}

 Imagine that every philosopher picks up her left chopstick at the
same moment

 Now, each will wait for another one to give up what would be their
right chopstick…forever

 We have the four conditions for deadlock:
 Mutual exclusion: Only one philosopher can hold the lock for a chopstick
 Hold-and-wait: Each philosopher acquires chopstick and tries to get

another
 No preemption: No philosopher can force another to give up her

chopstick
 Circular wait: Under the right circumstances, every philosopher can be

waiting for every other in a circle

 One solution is to add a semaphore initialized to SIZE – 1
 Then, only SIZE – 1 philosophers could try to grab a chopstick

void * philosopher (void * _args)
{

struct args *args = (struct args *) _args;
int self = args->self; // Philosopher index
int next = (self + 1) % SIZE;
sem_wait (args->can_eat); // Multiplexing semaphore
pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
pthread_mutex_lock (args->locks[next]); // Pick up right chopstick
sem_post (args->can_eat); // Multiplexing semaphore
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}

 In our example, the philosopher gets the first chopstick and immediately tries to get the
second

 In real situations, some work might need to get done between acquiring resources
 To avoid delays, it might be desirable to instead get a chopstick and then try to get the

second, releasing the first if that fails

while (! success)
{

pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
// Perform some work
// Then, try to get the right chopstick
if (pthread_mutex_trylock (args->locks[next]) != 0)

{
// Undo current progress
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick

}
else

success = true;
}

 We can break the circular wait condition with a clever ordering
 If every philosopher picks up her left chopstick at the same time, we're stuck
 But what if exactly one picked up her right chopstick first?
 Deadlock would become impossible!

void * philosopher (void * _args)
{

struct args *args = (struct args *) _args;
int self = args->self; // Philosopher index
int next = (self + 1) % SIZE;
if (self > next) swap (&self, &next); // Last philosopher swaps order
pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
pthread_mutex_lock (args->locks[next]); // Pick up right chopstick
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}

 Although a lot of computation involves both parallelism and
concurrency, they're two different things

 Concurrency means that tasks can interact with each other
 Parallelism means that two tasks are running at the same time
 You can have concurrency without parallelism
 Example: A multi-threaded program on a single-core system, which can

still have race conditions
 You can have parallelism without concurrency
 Example: Programs running on separate cores or processors that are

computing part of a larger answer without coordination

 There are two fundamental kinds of parallelism that are
possible

 Task parallelism
 Breaking up a problem into subtasks that can be run in parallel
 Example: Alice cooks dinner, Bob cleans the house, and Catherine

gets vengeance on their enemies
 Data parallelism
 Doing the same tasks in parallel but on different data
 Alice, Bob, and Catherine each chop up 1/3 of the total amount of

carrots for a soup

 The easiest kind of problems to parallelize are called
embarrassingly parallel
 Maybe there are many unrelated tasks that all need to get done
 Maybe there's lots of data to process, and no coordination is necessary to

process it
 The following code shows an embarrassingly parallel problem,

since initializing the array could easily be divided up among many
tasks

for (int i = 0; i < 100000000; ++i)
array[i] = i * i;

 Algorithms themselves can suggest approaches for
parallelism

 Divide-and-conquer algorithms divide problems into parts,
find answers for the sub-problems, and then combine those
answers into an overall solution
 Quicksort partitions into two subarrays and then recursively sorts
 Merge sort also divides and recursively sorts

 As discussed in COMP 4500, many important algorithms have
a divide-and-conquer shape, and it's often possible to let each
divided task be handled by a separate thread

 The idea of a pipeline is to divide a task into independent
steps, each of which can be performed by dedicated hardware
or software

 Example RISC pipeline:
1. Instruction fetch
2. Decode
3. Execute
4. Memory Access
5. Writeback

 The fork/join pattern uses a main thread that spawns additional threads
when there are parallel tasks to be done

 After those tasks complete, the main thread joins the spawned threads
 A fork/join pattern could be used for either task parallelization or data

parallelization

 Map/reduce is similar to fork/join
 The biggest difference is a philosophical

one about how the work is described
 Map/reduce has two stages:
 Map applies a function to each piece of input

data
 Reduce combines the results to get a final

answer
 Map/reduce is commonly used on

clusters and distributed systems
 The open source Apache Hadoop is a popular

tool for map/reduce computing

 The manager/worker thread pattern is commonly used with task parallelism
 Independent tasks are given to work threads that communicate with a central

management thread
 Event handling, for example, can be viewed as manager/worker
 Workers can also wait for a data value to change from NULL, as in the code below

void * worker (struct args * _args)
{
struct args *args = (struct args *) _args;
pthread_mutex_lock (args->lock);
while (true)
{
while (args->data == NULL) // Wait for data
pthread_cond_wait (args->data_received, args->lock);

if (! args->running) pthread_exit (NULL);
// Process data

}
}

 Rather than worrying about creating too many threads initially or dynamically creating
threads, one approach is a thread pool
 A thread pool is a fixed number of threads with a queue of tasks
 When a thread finishes its work, it can dequeue a new task

 Thread pools advantages:
 The cost of creating threads is only paid once
 Resource consumption is more predictable because there won't suddenly be a lot more threads
 Each thread self-manages the load by getting more work when it finishes

 Thread pools disadvantages:
 Cache performance can be poor because there's no coordination between which thread is doing

what
 Crashes and errors can be hard to recover from since we won't know which thread was doing the

thing that failed
 Managing the task queue requires synchronization that could slow things down

 Speedup is how much faster a parallel solution is compared to
a sequential one

 The formula is
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the amount of time the sequential solution takes

 𝑇𝑇𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the amount of time the parallel solution takes
 Thus, if a sequential solution to a problem takes 100 seconds,

and the parallel solution takes 50 seconds, the speedup is 2

 What if you had 16 cores? Or 1,000 cores? Or a million?
 How much speedup can you get?
 Some part of the program has to be executed sequentially
 Reading input
 Starting threads
 Combining results

 Amdahl's law says that the maximum speedup possible is 1
1−𝑝𝑝 +𝑝𝑝𝑁𝑁

 𝑝𝑝 is the fraction of a program that can be parallel
 𝑁𝑁 is the number of processors

 What if we had unlimited cores?
 We can take the equation 1

1−𝑝𝑝 +𝑝𝑝𝑁𝑁
and plug in ∞ for 𝑁𝑁

 Doing so would mean, even with infinite cores, we could never
have better speedup than 1

1−𝑝𝑝
 Let's say that 90% of a program can be parallelized
 What's the maximum possible speedup you can get?
 𝑆𝑆 = 1

1−𝑝𝑝
= 1

1−.9
= 1

.1
= 10

 When working on a single computer, there's only one clock
 Thus, multiple threads can use this clock to record events in a

mutually consistent way
 Like adding timestamps to log files

 Distributed systems don't have a single, reliable clock
 Each computer might have a slightly (or completely) different time
 Clocks on each computer drift with respect to each other
 These problems get worse as distance (and network delays) increase

 We can synchronize clocks based on a centralized server
 A problem is that the time a message takes in the network is

unpredictable
 Network Time Protocol (NTP) is a protocol to do this:
 Client sends a message at T1
 Server receives the message at T2
 Server replies at T3
 Client receives the message at T4

 Offset = 𝑇𝑇2−𝑇𝑇1 +(𝑇𝑇3−𝑇𝑇4)
2

 The offset is a measurement of the difference in times between the
client and server

 Delay = 𝑇𝑇4 − 𝑇𝑇1 − (𝑇𝑇3 − 𝑇𝑇2)
 The delay is a measurement of how long it takes for the messages to

make a round trip
 Algorithms process a number of offset and delay values to try to

find the most accurate offset

 Logical clocks are an alternative to using exact times, using
messages to track the order of events

 Lamport timestamps are a way to implement logical clocks
 Each process keeps an internal counter of events that it sees
 When a local event occurs, the counter is incremented
 When a process sends or receives a message, it increments its

counter
 Messages have timestamps
 When a process receives a message, it updates its internal counter to

the message's timestamp if that timestamp is larger

 Lamport timestamps only give indirect
information about the state of other
processes

 Vector clocks extend the idea of
Lamport timestamps by making every
process keep a counter for every
process

 When a message from one process
arrives, the receiving process can
update all of its counters based on
whatever is larger

 Vector clocks give much more
information about how many events
have been experienced by other
processes

 If you want to get a file from a web server, you can go to a URL
and make an HTTP request

 Unfortunately, if that server is down or unreachable, you can't get
the file

 For this reason, distributed systems are often used to store data
 A key feature of distributed data storage is replication, keeping

multiple copies of the same data
 Replication avoids a single point of failure
 If done correctly, replication can also do load balancing, improving

performance by providing multiple sources for data

 The Google File System (GFS) is a distributed storage system
 GFS was designed to store Google's internal data, like the

data structures used for PageRank
 Files are often large, so they're broken into chunks
 Chunks are stored on chunkservers as regular files
 A master server stores a table mapping files chunks to their

locations

 GFS was designed by Google for its own purposes
 It uses a central server
 Servers keep information about each other

 What if we have no idea what servers are going to be in the
network?

 Distributed hash tables (DHT) are an approach for mapping
arbitrary objects to arbitrary servers

 DHTs are a way to organize a peer-to-peer network to avoid
query flooding

 Chord was one of the first algorithms for a DHT,
introduced in 2001

 Each node has a unique identifier (often its IP
address) that's hashed to provide a location in a
circle
 If the hash is n bits long, the DHT can support up to

2n nodes
 Most locations in the circle are empty
 Each node has a "finger table," tracking

successor elements in increasing powers of 2
away on the circle
 If the power of 2 node is missing, it tracks the next

non-missing node
 The example on the right is only for 25 = 32

nodes

 When a file is added, it's hashed
 Whichever node has that hash value (or is its

successor) is the location of that file
 On the right, node 6 is looking for a file at location

19 (the successor of 18)
 It looks at 6 + 8 = 14, which doesn't exist but has a

successor of 16
 Then it looks at 16 + 2 = 18, which doesn't exist but

has a successor of 21
 Node 21 is where the file is supposed to be

 The details get a little more complex, but the
practical result is that a file can be found with
O(log n) requests, where n is the size of the
network

 Replication is done by caching files at nodes that
were part of the lookup to find the file

 Reaching consensus is the goal of many distributed protocols
 To reach consensus, a protocol must have three properties:
 Termination: Every correct (non-failing) process will eventually decide on

a value
 Integrity: If every correct process proposes the same value, any correct

process must decide that value
 Agreement: All correct processes decide the same value

 Examples
 In GFS, a consensus protocol could tell any node whether a particular file

was on a particular node
 In NTP, nodes will be able to agree on synchronized time

 However, processes do fail in distributed systems
 Failure could mean making some error, crashing, going into

an infinite loop, or losing connection to the network
 Processes could even be malicious, trying to undermine the system

 Even in the face of (many?) failures, we'd like the distributed
system to reach consensus

 A common analogy used to describe this problem is the
Byzantine generals problem

 A version of the Byzantine generals problem imagines:
 One general is the commander who decides what to do
 The other two are lieutenants who check with each other to make

sure that they got the same message from the commander
 What if there's one bad general?
 A bad commander could send retreat to one lieutenant and attack to

the other
 A bad lieutenant could receive attack from the commander but send

retreat to the other lieutenant
 A good lieutenant couldn't distinguish between those two situations

 Consensus is hard
 Failing processes can mess things up for correct processes
 Because there's limited information, a process can appear to be

correct to one part of the system and failing to another
 A Byzantine failure is exactly this kind
 There's conflicting information, and it's impossible to determine

what's reliable

 It's not an accident that the number of
generals chosen is three

 If strictly less than 1/3 of the nodes are
failing, it's possible to achieve consensus

 If we extend the problem to four generals
(three lieutenants), then generals who are
working can decide on a consensus using
majority rule

 Even a bad commander who issues
confusing orders won't mess up the system

 However, knowing what the consensus is
doesn't tell us which nodes are failing

 Also, this 1/3 limit depends on synchronous
communication

 Blockchains are a form of distributed ledger
 Unlike banks, which are centralized authorities for transactions

that have occurred at the banks, blockchains try to record
transactions in a distributed way with no central authority

 Although similar ideas existed before, blockchains as we know
them were invented by Satoshi Nakamoto (real identity unknown)
in 2008

 The original blockchain idea was intended to keep track of bitcoin
transactions

 Now, most cryptocurrencies use some form of blockchain to track
transactions

 Blockchains are distributed systems that can be used to
record almost anything

 But their use has been dominated by cryptocurrency
 A central problem that any digital money faces is double-

spending
 What stops someone from spending a digital token more than once?

 Transactions are recorded in blockchains
 Two competing blockchains could record different

transactions, but the longer chain is considered the valid one

 Blockchains are built by recording transactions along with other
data that hashes in a specified pattern
 Usually, a hash value with a certain number of zeroes at the beginning

 It's easy to check that the transaction has the right hash value
 But it's computationally difficult to generate data that has a hash

with a certain number of zeroes at the beginning
 And that's what mining is: Trying random strings until something

has the right hash value
 Since a large number of strings will have the right hash value, an

entity with more than 50% of the computational power working
on a blockchain network could outpace everyone else writing
transactions, taking control of it

 String manipulation is annoying but necessary in C
 You should be able to use the following functions:

 char *strcat(char *dest, const char *src)
▪ Appends the string src to the end of the string pointed dest

 char *strncat(char *dest, const char
*src, size_t n)
▪ Appends the string src to the end of the string dest, up to n

characters
 char *strchr(const char *str, int c)

▪ Searches for the first occurrence of the character c (an unsigned
char) in the string str

 int strcmp(const char *str1, const char
*str2)
▪ Compares strings str1 and str2

 int strncmp(const char *str1, const char
*str2, size_t n)
▪ Compares at most the first n bytes of strings str1 and str2

 char *strcpy(char *dest, const char *src)
▪ Copies the string src into dest

 char *strncpy(char *dest, const char
*src, size_t n)
▪ Copies up to n characters from the string src into dest

 size_t strlen(const char *str)
▪ Computes the length of the string str

 char *strstr(const char *haystack, const
char *needle)
▪ Finds the first occurrence of string needle in the string

haystack

 char *strtok(char *str, const char
*delim)
▪ Breaks string str into a series of tokens separated by delim

 File I/O is the key abstraction for all I/O in Linux
 So you should be able to use the following functions:
 int open (char *path, int flags, int perms)

▪ Open the file specified by path
▪ Possible flags: O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, O_APPEND, O_TRUNC
▪ Permissions: Only needed when creating a file, and octal values are the easiest

 int close(int fd)
▪ Close the file given by file descriptor fd

 int read (int fd, char *buffer, int size)
▪ Read from file descriptor fd into buffer a maximum of size bytes
▪ Returns the number of bytes successfully read

 int write(int fd, char *buffer, int size)
▪ Write from buffer into file descriptor fd a maximum of size bytes
▪ Returns the number of bytes successfully written

 You should know these pretty well:
 pid_t fork (void)

▪ Fork a new version of the current process at exactly the same point in the program
 int execl(char *path, char *arg0, ..., NULL)
 int execle(char *path, char *arg0, ..., NULL, char* envp[])
 int execlp(char *file, char *arg0, ..., NULL)
 int execv(char *path, char *argv[])
 int execve(char *path, char *argv[], char *envp[])
 int execvp(char *file, char *argv[])

▪ Execute a process (replacing the current process) with the given arguments and environment variables
 pid_t wait(int *stat_loc)

▪ Wait for all child processes to finish
 int pipe(int pipefd[2])

▪ Create a pipe where pipefd[0] is the reading end of the pipe and pipefd[1] is the writing end
 int dup2(int actual, int replaced)

▪ All reads from and writes to replacedwill actually be read from or written to actual

 You don't need to have these functions memorized, but you should be familiar enough to
read them in code and understand them
 int socket (int domain, int type, int protocol)

▪ Create a socket, which will work like a file descriptor
 int bind (int socket, const struct sockaddr *address, socklen_t
address_len)
▪ Bind the socket to a port

 int listen (int socket, int backlog)
▪ Set up the socket for listening

 int accept (int socket, struct sockaddr *address, socklen_t
*address_len)
▪ Accept an incoming connection

 int connect (int socket, const struct sockaddr *address, socklen_t
address_len)
▪ Connect to a listening socket

 You don't need to have these functions memorized, but you
should be familiar enough to read them in code and understand
them:
 int pthread_create (pthread_t *thread, const
pthread_attr_t *attr, void(*start_routine)(void*),
void *arg)
▪ Create a new thread

 void pthread_exit (void *value_ptr)
▪ Exit from the current thread, possibly returning a result

 void pthread_join (pthread_t thread, void
*value_ptr)
▪ Wait for a thread to end (getting a pointer to its result, if any)

 You don't need to have these functions memorized, but you should be familiar enough to read
them in code and understand them:
 sem_t *sem_open (const char *name, int flag,

/* mode_t mode, unsigned int value */)
▪ Return (and possibly create) a named semaphore, using the usual flag and mode constants
▪ value determines the initial value of the semaphore (often 0)

 int sem_wait (sem_t *sem)
▪ Block if the semaphore's value is 0, decrement after continuing

 int sem_post (sem_t *sem)
▪ Increment the semaphore's value, unblocking a process if the value is 0

 int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

▪ Create a mutex with the specified attributes
 int pthread_mutex_lock (pthread_mutex_t *mutex)

▪ Acquire a mutex, blocking until you succeed
 int pthread_mutex_unlock (pthread_mutex_t *mutex)

▪ Release the mutex

 There is no next time!

 Finish Assignment 8
 Due tonight before midnight!

 Study for the final exam:
 Wednesday, April 30, 2025
 8:00 – 10:00 a.m.

	COMP 3400
	Last time
	Questions?
	Assignment 8
	Review
	Final exam format
	Threading
	Threads and processes
	Advantages of threads
	Disadvantages of threads
	Race conditions
	Critical sections
	Incrementing variables
	Thread safety
	POSIX Threads
	POSIX threads
	POSIX thread functions
	Creating a thread
	Simple threading example
	Common mistakes
	Passing arguments
	A useful hack
	A thread function that uses a pointer like an int
	Passing multiple arguments to a thread
	Multiple argument example
	Returning values from threads
	Synchronization
	Synchronization
	Examples of synchronization
	Critical sections
	Locks
	Lock features
	POSIX mutex functions
	How long should critical sections be?
	Semaphores
	Semaphore functions
	Semaphores for signaling
	Mutual exclusion with semaphores
	Semaphores as multiplexing
	Semaphore summary
	Barriers
	Barrier functions
	Merge sort
	Threaded merge sort visualized
	Final merging visualized
	Weaknesses of semaphores
	Condition variables
	Deadlock
	Deadlock
	Deadlock
	Deadlock example
	Possible states
	Why does this happen?
	Necessary conditions
	Livelock
	Avoiding deadlock
	Synchronization Design Patterns
	Signaling
	Turnstiles
	Rendezvous
	Multiplexing
	Lightswitches
	Producer-Consumer
	Producer-consumer
	Unsafe producer-consumer with a bounded queue
	Safe producer-consumer with a bounded queue and a single producer and consumer
	Safe producer-consumer with a bounded queue and multiple producers and consumers
	Readers-Writers
	Readers-Writers
	First solution: Lightswitches
	What's the problem with this solution?
	Second solution: Add a turnstile
	Illustration of second solution
	Search-insert-delete problem
	Search-insert-delete solution
	Issues with this solution
	Dining Philosophers
	Dining philosophers
	The problem
	A solution with deadlock
	Why it has deadlock
	Solution by limiting access
	Solution by breaking hold and wait
	Solution by imposing order
	Distributed Computing
	Parallelism vs. concurrency
	Task parallelism and data parallelism
	Embarrassingly parallel
	Divide-and-conquer
	Pipelines
	Fork/join
	Map/reduce
	Manager/worker
	Thread pools
	Limits of Parallelism
	Speedup
	Amdahl's Law and strong scaling
	Consequences of Amdahl's law
	Timing in Distributed Environments
	Timing in distributed environments
	Clock synchronization
	Lamport timestamps
	Vector clocks
	Reliable Storage and Location
	Reliable data storage
	Google File System
	Distributed hash tables
	Chord DHT
	Files in Chord DHT
	Consensus in Distributed Systems
	Consensus
	Failure
	Byzantine generals
	Limits on consensus
	The 1/3 limit
	Blockchains
	Double-spending
	Proof-of-work
	Libraries You Should Know
	String manipulation
	File I/O
	Process management functions
	Networking
	Threads
	Synchronization
	Upcoming
	Next time…
	Reminders

