
Week 14 – Friday



 What did we talk about last time?
 Review up to Exam 2
 Networking

▪ Application
▪ Transport
▪ Internet
▪ Link
▪ Physical

 Socket programming
 Peer-to-peer networks
 HTTP
 TCP vs. UDP
 Network security

▪ CIA
▪ Symmetric and public key cryptography
▪ Cryptographic hash functions









 Final exam will be in this room:
 Wednesday, April 30, 2025
 8:00 – 10:00 a.m.
 50% longer than previous exams, but you have 100% more time

 Mostly short answer questions
 One or two matching questions
 A couple of debugging questions
 A couple of programming questions





 Many processes can run concurrently
 Each one executes independently
 Each process has its own memory layout

 Many threads can also run concurrently
 Each one executes independently
 Each thread has its own stack to keep track of its function calls
 But all threads within a process share code, data, heap, and kernel 

segments
 Just as we used fork() to spawn new processes, there are 

libraries to spawn new threads within a process and coordinate 
them



 Using threads allows for more modular software since threads 
can call the same functions within a program

 Threads can be more efficient since there's no context switch 
needed for different threads to interact

 Some models of programming like GUIs depend on threads so 
that one unit of code needs can react to an action taken 
elsewhere

 Since threads share memory, there's no need for IPC libraries



 Threads are less isolated from each other than separate 
processes

 Consequences:
 A thread crashing from a segmentation fault will kill the entire 

process, including the other threads
 Bugs called race conditions occur, where the behavior of the 

program is different depending on which thread executed first



 Race conditions are a central problem with threads
 Thread scheduling is non-deterministic
 It's often impossible to predict when the statements from one thread 

are going to be executed with respect to those in another thread
 If the statements modify the same memory, the results can be 

inconsistent
 One of the most frustrating issues with race conditions is that 

they can occur rarely
 This means that you can run your program 1,000 times with no 

problems, only to crash badly on time 1,001



 A critical section is a series of statements that must be executed 
atomically to get the right result

 Atomic execution means that all the statements happen as if they 
happened at once, without other statements from other threads 
interfering

 Even statements that look atomic like i++ are actually several 
different operations in assembly language

movq _globalvar(%rip), %rsi # copy from memory into %rsi register
addq $1, %rsi # increment the value in the register
movq %rsi, _globalvar(%rip)    # store the result back into memory



 Consider two threads that share an int variable called 
global that is initially set to 0:

 What are the largest and smallest values that global could 
have after these threads run to completion?

for (int i = 0; i < 200; ++i)
++global;

Thread A

for (int j = 0; j < 300; ++j)
++global;

Thread B



 Many functions are thread safe, meaning that they can be 
called by many threads at the same time and still give the 
right answers

 Other functions are not thread safe
 Examples: rand() and strtok()

 The usual reason that functions are not thread safe is because 
they contain static local variables

 Because these variables are shared by all threads, they can 
become corrupted





 Just as we could create a new process with fork(), there are libraries for 
making new threads

 POSIX threads (also called pthreads) are perhaps the most widely used 
thread library
 Windows (of course) has its own threading library, though people have built 

POSIX-like libraries on top of it
 Key POSIX concepts
 Creating a thread starts it running
 A thread can exit, stopping its running
 Joining a thread means waiting for a thread to finish (and potentially getting its 

result)
 We keep track of processes with an ID of type pid_t, but we keep track of 

threads with an ID of type pthread_t



 Here are POSIX functions mapping to concepts from the previous slide

 Create a new thread (not as bad as it looks)

 Exit from the current thread (giving a pointer to the result, if any)

 Join a thread (getting a pointer to its result, if any)

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit (void *value_ptr);

void pthread_join (pthread_t thread, void *value_ptr);



 Creating a thread is the most complicated function, partly 
because it takes a function pointer and potentially arguments

 thread is a pointer to a pthread_t that will get filled in with the 
thread's ID
 attr is a pointer to possible thread attributes (often left NULL)
 start_routine is a pointer to a function that takes a void* and 

returns a void*
 arg is a pointer to arguments, NULL if no arguments needed

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);



#include <stdio.h>
#include <pthread.h>       // POSIX thread library
#include <assert.h>

void *
start_thread (void *args)  // Function to start thread with
{
printf ("Hello from thread!\n");
pthread_exit (NULL);

}

int
main (int argc, char **argv)
{
pthread_t child_thread;

// Create new thread with function start_thread
assert (pthread_create (&child_thread, NULL, start_thread, NULL) == 0);

pthread_join (child_thread, NULL);  // Wait for other thread to finish
pthread_exit (NULL);  // main() exits like any other thread

}



 Passing in a garbage pthread_t* instead of the address of 
a real pthread_t

 Calling the threading function (with parentheses) instead of 
passing a function pointer in

 Joining with a pthread_t* instead of a pthread_t

pthread_t *thread; // No!

pthread_create (thread, NULL, start (), NULL); // No!

pthread_join (thread, NULL); // No!



 Passing arguments to threads is tricky
 Passing addresses to objects on the stack is dangerous in case the 

function creating the threads returns
 Passing pointers to the same object to multiple threads can cause 

problems if they fight over it
 There are no timing guarantees over which thread will run when



 On most modern machines, a pointer is either 32 bits or 64 bits
 An int is usually 32 bits
 We can cast an int to a pointer and pass that to the thread
 The thread will then cast the pointer back to an int
 Since the size of an int is almost always less than a pointer, we 

don't lose any information
 It's icky, but it allows us to pass simple values like a char, short, 

or int
 Both floating-point types are harder since they have to be tricked into 

behaving like integers (which pointers fundamentally are)
 And double is risky since it needs a 64-bit pointer to hold it all



void * child_thread (void *args)
{
int value = (int) args; // Now, I pretend it's an int!
printf ("I'm a thread with value: %d\n", value);
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t threads[10];  // Array to hold thread IDs

// Start up those threads, pretending ints are pointers
for (int i = 0; i < 10; i++)
pthread_create (&threads[i], NULL, child_thread, (void*)i);

for (int i = 0; i < 10; i++)
pthread_join(threads[i], NULL);

pthread_exit (NULL);
}



 To pass multiple arguments, they're often grouped in a struct
 Remember that threads all have their own stacks
 Thus, we need to pass in a struct that has been dynamically 

allocated on the heap (which is shared)
 Also, any pointers that struct contains should point at memory that 

isn't on the stack



struct thread_args
{
int value;
const char* string;

};

int main (int argc, char **argv)
{
pthread_t thread;
struct thread_args* args = malloc(sizeof(struct thread_args));
args->value = 42;
args->string = "wombat";

// Thread casts void* to struct thread_args* when it gets it
pthread_create (&thread, NULL, child_thread, args);

pthread_join(thread, NULL);
pthread_exit (NULL);

}



 A common model for threads is for them to go and perform 
some work

 After the work is done, they need to give back the answer
 There are three ways to do this:

1. Store the answer back into the dynamically allocated struct passed 
in for its arguments

2. Use the hack like before to return a "pointer" through the join that's 
actually an int

3. Return a pointer through the join to a dynamically allocated struct 
containing the answer





 Now you have all the tools needed to create, run, and join threads
 But you don't have any tools to avoid the problem of race conditions
 Synchronization is used to coordinate between threads, often by 

enforcing critical sections, sections of code that only one thread can be 
executing at a time

 Common synchronization tools:
 Locks (mutexes)
 Semaphores
 Barriers
 Condition variables

 If used incorrectly, however, synchronization tools can lead to other 
problems such as deadlock and livelock



 The following are common examples of synchronization:
 Multiple threads share a data structure, but only one can write to it at 

a time
 Only so many threads can access a shared resource to avoid 

slowdowns
 Certain events need to happen in a certain order
 Some calculations must be done before an action can be taken

 Performing synchronization so that the result is correct while 
avoiding performance penalties is challenging



 Recall that a critical section is a section of code that it's safe 
for only a single thread to be executing

 Often this is because non-atomic memory accesses (such as 
reading a value, doing calculations, and then writing back to 
memory) can get inconsistent results if more than one thread 
is executing them concurrently

 A common use of synchronization tools is to block threads 
trying to access a critical section if a thread is already 
executing it



 A key synchronization tool is called a lock (or a mutex, short 
for mutual exclusion)

 Critical sections can be protected by a lock
 First code acquires the lock
 Then it performs the code in the critical section
 Then it releases the lock

 For POSIX threads, lock functionality is provided by several 
mutex functions that operate on pthread_mutex_t
objects



 Mutual exclusion
 Locks start unlocked
 Only one thread can acquire a lock at a time
 No other thread can acquire a lock until it's been released

 Non-preemption
 A lock must be voluntarily released by the thread that acquired it

 Atomic operations
 Acquire and release are atomic operations

 Blocking acquires
 If a thread tries to acquire a lock, it's blocked and added to the queue
 When the thread holding the lock releases it, only one thread acquires it



 Create a mutex with the specified attributes

 Destroy an existing mutex

 Acquire a mutex, blocking until you succeed

 Try to acquire a mutex, returning non-zero if another thread has the mutex

 Release the mutex

int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_mutex_lock (pthread_mutex_t *mutex);

int pthread_mutex_trylock (pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t *mutex);



 Now that you have locks that you can use to protect a critical 
section, how should you use them?

 In general, you want critical sections to be short so that one 
thread won't block another unnecessarily

 Nevertheless, breaking up one section of code into several 
critical sections will introduce penalties because acquiring and 
releasing locks isn't free



 We mentioned semaphores in the context of synchronizing 
processes that shared memory

 We can use semaphores to synchronize threads as well
 Recall that we think of a semaphore as a non-negative integer 

that can be incremented and decrementing atomically
 Calling sem_wait() (decrement) on a semaphore at 0 will block 

until another thread calls sem_post() (increment)



 Return (and possibly create) a named semaphore, using the usual oflag and mode flags
 value determines the initial value of the semaphore (often 0)

 Block if the semaphore's value is 0, decrement after continuing

 Increment the semaphore's value, unblocking a process if the value is 0

 Close a semaphore

 Delete a semaphore

sem_t *sem_open (const char *name, int oflag,
/* mode_t mode, unsigned int value */ );

int sem_wait (sem_t *sem);

int sem_post (sem_t *sem);

int sem_close (sem_t *sem);

int sem_unlink (const char *name);



 We can use semaphores to signal some event to another thread
 As in our earlier examples with semaphores, we initialize the 

semaphore to 0
 The thread waiting for the event will call sem_wait() on the semaphore
 The thread signaling that the event has happened will call sem_post()
 The waiting thread will be awoken when the signaling thread posts
 If the signaling thread posts before the waiting starts waiting, it won't 

have to wait



 It should be unsurprising that we can use semaphores instead of 
locks (POSIX mutexes)

 To do so, we initialize the semaphore to a value of 1
 When entering a critical section, a thread waits on (downs) the semaphore
 When leaving a critical section, the thread posts on (ups) the semaphore

 The first thread reaching the critical section is allowed in because 
the value is 1

 If we had initialized to 0, no threads could enter the critical section



 Semaphores can also be used for multiplexing, in which a 
maximum number of threads are allowed to access a resource

 Consider a club where the bouncer only lets 100 people in
 This kind of synchronization is used less than signaling and 

mutexes, but it can be useful to prevent slowdown from too many 
threads using a resource

 Also, it can be used to prevent possible race conditions when 
there's a fixed number of items but the threads themselves have 
to select the one they want
 No more than the maximum number of threads will be allowed to do 

selection



 Semaphores are a flexible tool that can be used for signaling, 
mutual exclusion, and multiplexing

 The key is the initial value of the semaphore
 0 for signaling
 1 for mutual exclusion
 Greater than 1 for multiplexing

 Conceptually, the initial value of the semaphore is the 
maximum number of concurrent accesses



 Sometimes a bunch of threads are working on a task that has 
phases

 We want to guarantee that all threads have finished Phase 1 
before moving on to Phase 2

 To guarantee this, we can use barriers
 A barrier prevents threads from continuing unless k threads have 

reached it
 It's common for k to be the total number of threads
 Sometimes, however, the calculation is fine as long as at least k are done

 It's possible to do this kind of coordination with semaphores, but 
it's hard to get it exactly right



 Create a barrier with the attributes given (often NULL) and the count 
of threads blocked

 Free up the resources associated with a barrier

 Wait on a barrier until enough threads reach it

int pthread_barrier_init (pthread_barrier_t *barrier, const 
pthread_barrierattr_t *attr, unsigned count);

int pthread_barrier_destroy (pthread_barrier_t *barrier);

int pthread_barrier_wait (pthread_barrier_t *barrier);



 We can imagine a threaded merge sort that works in this way:
 Each thread is assigned a section of the array to sort
 Each thread uses merge sort to sort that part of the array
 All threads wait on a barrier

 Then
 Even numbered threads merge together their section with the 

neighboring section
 Threads that are multiples of four merge together double sections with 

other double sections
 Threads that are multiples of eight merge together quadruple sections 

with other quadruple sections
 …



 Each thread is assigned a section of an array and sorts it

 Since there's no overlap, each thread can work independently
 After sorting, all threads wait on a barrier to be sure that every 

thread has finished sorting

Values

Threads 0 1 2 3 4 5 6 7



 Threads can't merge the same parts of the array without causing race conditions
 Half the threads merge with their neighbors

 Then, half of those merge

 And so on, until it's all merged

Values

Threads 0 2 4 6

Values

Threads 0 4

Values

Threads 0



 Semaphores are very general purpose concurrency tool, but they 
have some weaknesses:
 Semaphores take thought to use correctly: Incrementing and 

decrementing values don't map clearly to synchronization problems
 Different implementations of semaphores have different features
 Some systems (like macOS) don't have a full implementation of 

semaphores
 Semaphores can only signal to one thread: no broadcasting
 After getting a signal, threads have to take another step (like acquiring a 

lock) to get mutually exclusive access, time that can allow a race condition



 Condition variables try to overcome some weaknesses of semaphores by 
tying themselves directly to a lock

 They also have the ability to broadcast, waking up all waiting threads
 Like semaphores, they still have a function to wait and a function to signal
 However, something sneaky happens with wait:
 First, the thread must acquire a lock
 Then, it calls the wait function
 If it has to wait, it releases the lock but then reacquires it when it gets woken up
 All of which happens atomically

 This allows a thread to safely check a condition and wait until it gets 
signaled

 Think of a condition variable as a queue for waiting threads





 In order to avoid race conditions, we introduced several 
synchronization tools:
 Locks (mutexes)
 Semaphores
 Barriers
 Condition variables

 Each of these can be misused, failing to avoid race conditions
 Likewise, each introduces overhead, slowing the system down
 But an even worse possibility is deadlock



 Deadlock occurs when the use of synchronization primitives 
cause threads to get stuck so that they will never make 
progress again
 A lock that never gets unlocked
 A semaphore that never gets posted on
 A barrier that is never reached by enough threads
 A condition variable that is never signaled on

 Like many concurrency problems, deadlock can occur rarely or 
it can happen every time a program runs



 In the following code, deadlock is possible

struct args {
pthread_mutex_t lock_a;
pthread_mutex_t lock_b;

};

void * first (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_a); // Lock A
pthread_mutex_lock (&data->lock_b); // Then lock B
// More code (that would eventually unlock A and B)

}

void * second (void * args)
{
struct args *data = (struct args *) args;
pthread_mutex_lock (&data->lock_b); // Lock B
pthread_mutex_lock (&data->lock_a); // Then lock A
// More code (that would eventually unlock A and B)

}



 The following state diagram shows the states the threads can be in:

Both 
Unlocked

Second 
Locked B

First Locked 
A

First Locked 
Both

Second 
Locked Both

Deadlock

Second Unlocks BothFirst Unlocks Both

First Locks ASecond Locks B



 The two threads try to acquire locks in different orders:
 First tries to get lock A followed by lock B
 Second tries to get lock B followed by lock A

 If they tried to get the locks in the same order, we would never 
have this problem

 Even so, real situations are more complex
 Threads might need to acquire a number of locks for a 

number of resources
 The order might be hard to predict ahead of time



 Four conditions are needed for deadlock to 
be possible:
1. Mutual exclusion: Once a resource has been 

acquired, no other thread gets it
2. No preemption: Threads can't be made to give 

up their resources
3. Hold and wait: Threads can get one resource 

and keep it while trying to get others
4. Circular wait: Thread A needs a resource held 

by Thread B, and Thread B needs a resource 
held by Thread A (or extend to a chain of 
threads)

 Conditions 1 through 3 are unavoidable, so 
solutions often focus on avoiding circular 
wait



 Livelock is similar to deadlock
 It's a condition where, due to bad timing, processes continue 

executing code, but they never make progress beyond a 
certain point
 They're acquiring resources, giving them up, and acquiring them 

again, but still blocking each other
 If the system is set up in a certain way or is very unlucky, 

livelock could continue indefinitely
 Livelock can also sometimes resolve



 As mentioned before, we usually concentrate on the circular 
wait condition of deadlock:
 Order the resources and always acquire them in the same order
 Use timed or non-blocking versions of functions that acquire 

resources, potentially causing livelock
 Limit the number of threads that can access the resources, insuring 

that there's always enough resources to go around





 Signaling is a design pattern we've already discussed
 One thread needs to wait until a event has occurred
 A second thread signals the first

 POSIX thread implementation:
 Initialize a semaphore to 0
 Have the first thread call sem_wait() on the semaphore when it needs to wait
 Have a second thread call sem_post()when the event has occurred

 Because semaphores have an integer value, the scheduling of the threads 
doesn't matter
 If the second thread has already signaled, the first thread will immediately 

return from sem_wait()



 Unlike signaling, which unblocks a single thread, the turnstile design 
pattern is used to unblock many threads when an event occurs

 POSIX implementation:
 Initialize a semaphore to 0
 Have a thread  call sem_post() on the semaphore when the event occurs
 All threads that need to wait call sem_wait() followed by sem_post()
 Each thread waking up will wake up one more

 Turnstiles work similarly to the broadcast function for condition variables
 But broadcasts will only wake up those threads that are currently waiting
 Turnstiles let all threads pass through, even if they reach the sem_wait() after 

the event has already happened



 In the rendezvous pattern, two threads signal that they have both 
reached a specific point in execution

 POSIX implementation:
 Initialize semaphore A and semaphore B to 0
 Thread 1 calls sem_post() on semaphore A and sem_wait() on 

semaphore B
 Thread 2 calls sem_post() on semaphore B and sem_wait() on 

semaphore A
 Each thread will only get blocked until the other one signals
 Order matters! Flip the waits with the posts and you'll have deadlock

 For larger numbers of threads, using a barrier might be a better 
approach



 Multiplexing is another design pattern we've already mentioned
 Multiplexing is useful when mutual exclusion is more restrictive than you 

need, but you still want to limit the total number of threads able to 
execute a section of code

 POSIX implementation:
 Initialize a semaphore to n, where n is the maximum number of concurrent 

accesses you want to allow
 Each thread calls sem_wait() on the semaphore before executing the code
 Each thread calls sem_post() on the semaphore after executing the code

 This design pattern can be useful when spawning threads on a server to 
handle requests
 We want to prevent too many threads from being created in order to avoid 

bogging down the server



 We sometimes want to allow multiple threads of a certain kind to run code concurrently but force others to use 
mutual exclusion
 Many threads that only read memory, for example, could access the memory at the same time
 But only one thread that writes memory should be allowed in

 The lightswitch design pattern allows this kind of access
 The name comes from the idea that the first person into a room turns on a lightswitch and the last person turns it off

 POSIX implementation:
 Initialize a semaphore to 1
 Initialize a counter variable to 0
 Create a lock
 Whenever a reader thread wants to read:

▪ It acquires the lock
▪ Increments the counter
▪ If the counter is 1, call sem_wait() on the semaphore
▪ Unlock the lock

 Whenever a reader thread is done reading:
▪ It acquires the lock
▪ It decrements the counter
▪ If the counter is 0, it calls sem_post() on the semaphore
▪ Unlock the lock

 Writers simply call sem_wait() to start writing and sem_post()when done





 The producer-consumer problem comes up all the time in 
concurrent systems
 One or more threads is producing elements that go into a buffer
 One or more threads is consuming elements from the buffer

 A producer can't put an item into a full buffer and must block
 A consumer can't remove an item from an empty buffer and must 

block
 Example:
 An OS thread is putting data into a buffer that's coming across the 

network
 A user thread is trying to read data out of that buffer



 Our implementation uses a circular array (that wraps back around to the beginning)
 The following code is unsafe for two reasons:
 It doesn't check to see if the buffer is full when enqueuing or empty when dequeuing
 Changing queue data is unsafe for a multi-threaded application

void enqueue_unsafe (queue_t *queue, data_t *data)
{
// Store the data in the array and advance the index
queue->contents[queue->back++] = data;
queue->back %= queue->capacity;

}

data_t * dequeue_unsafe (queue_t *queue)
{
data_t * data = queue->contents[queue->front++];
queue->front %= queue->capacity;
return data;

}



 We could use locks and check a variable giving the total number of elements in the queue
 However, semaphores have this feature built in
 We initialize the space semaphore to the maximum size of the queue
 We initialize the items semaphore to 0

void enqueue (queue_t *queue, data_t *data, sem_t *space, sem_t *items)
{
sem_wait (space);
enqueue_unsafe (queue, data);
sem_post (items);

}

data_t * dequeue (queue_t * queue, sem_t *space, sem_t *items)
{
sem_wait (items);
data_t * data = dequeue_unsafe (queue); 
sem_post (space);
return data;

}



 Unfortunately, the two semaphores aren't enough when there are multiple producers and consumers
 In that situation, two producers could both be calling enqueue_unsafe(), potentially causing a race 

condition with the increment
 The solution is to one lock for producers and one lock for consumers
 We could use a single lock for both, but using two locks allows producers and consumers to modify the queue 

concurrently yet safely

void enqueue (queue_t *queue, data_t *data, sem_t *space, sem_t *items, pthread_mutex_t *producer_lock)
{

sem_wait (space);
pthread_mutex_lock (producer_lock);
enqueue_unsafe (queue, data);
pthread_mutex_unlock (producer_lock);
sem_post (items);

}

data_t * dequeue (queue_t * queue, sem_t *space, sem_t *items, pthread_mutex_t *consumer_lock)
{

sem_wait (items);
pthread_mutex_lock (consumer_lock);
data_t * data = dequeue_unsafe (queue); 
pthread_mutex_unlock (consumer_lock);
sem_post (space);
return data;

}





 What if we have a situation where we want to allow an 
unlimited number of reader threads to read data?

 But if a single writer needs to write, no other threads can 
access the data

 Changing the data can cause race conditions, but merely 
reading it concurrently is fine
 And can make reading much faster!



 This is exactly the scenario we solved with lightswitches:
 Initialize a semaphore to 1
 Initialize a counter variable to 0
 Create a lock
 Whenever a reader thread wants to read:

▪ It acquires the lock
▪ Increments the counter
▪ If the counter is 1, call sem_wait() on the semaphore
▪ Unlock the lock

 Whenever a reader thread is done reading:
▪ It acquires the lock
▪ It decrements the counter
▪ If the counter is 0, it calls sem_post() on the semaphore
▪ Unlock the lock

 Writers call sem_wait() to start writing and sem_post() when done



 When a reader comes into the 
room, it becomes blocked for 
writers

 If more readers come in before 
others leave, writers might 
never get to enter

 What do we do?



 We add a turnstile for the readers
 They pass through without any problem at first

 When a writer wants to write, it waits on the reader 
semaphore

 This blocks any new readers from entering



 The system starts off with its two semaphores having the following values:
 Lightswitch: 1
 Turnstile: 1

Reader 1 Enters
• Lightswitch: 0
• Turnstile: 1

Reader 2 Enters
• Lightswitch: 0
• Turnstile: 1

Writer Tries to Enter 
(Blocked)
• Lightswitch: 0
• Turnstile: 0

Reader 3 Tries to 
Enter (Blocked)
• Lightswitch: 0
• Turnstile: 0

Reader 1 Exits
• Lightswitch: 0
• Turnstile: 0

Reader 2 Exits
• Lightswitch: 1
• Turnstile: 0

Writer Enters
• Lightswitch: 0
• Turnstile: 1

Writer Exits
• Lightswitch: 1
• Turnstile: 1

Reader 3 Enters
• Lightswitch: 0
• Turnstile: 1



 The readers-writers problem can be extended to a problem with the 
following characteristics:
 Searchers are searching for data (similar to regular readers)
 Inserters are a kind of writer that only adds data
 Deleters are a kind of writer that only removes data

 Rules:
 Searchers can be concurrent with each other and an inserter
 Inserters can be concurrent with searchers, but there can only be one inserter at 

a time
 Deleters must be mutually exclusive with everyone

 You can imagine a version of this problem for concurrent accesses to 
databases



 Searchers use a lightswitch as before
 Inserters use their own lightswitch but also have a lock to 

prevent concurrent insertions with each other
 Deleters must wait on both lightswitches
 This solution works because a deleter can enter only when 

there are no searchers or inserters



 Like our first solution for readers-writers, deleters can be starved if 
searchers or inserters continue to arrive
 Never getting to run is called starvation

 We could increase fairness for this solution by adding turnstiles as 
well
 One turnstile semaphore could be shared by all searcher and inserters
 When a deleter comes along, it waits on the turnstile, blocking all new 

searchers and inserters from entering
 When a deleter gets access to the critical section, it posts on the turnstile, 

allowing all waiting threads to get to their respective lightswitches





 A classic problem illustrating the difficulties of 
concurrency is the dining philosophers problem

 Some number of philosophers sit at a round table 
and only do two things:
 Think
 Eat rice

 In order to eat rice, they have to pick up two 
chopsticks, one on the left and one on the right
 The book has them eat with forks, but chopsticks make 

more sense for the problem
 You can eat rice with one fork, but you can't eat rice with 

one chopstick
 Critically important: The numbers of chopsticks and 

philosophers are equal



 We have to enforce mutual exclusion for 
the chopsticks

 Two philosophers can't hold onto the 
same chopstick at the same time

 It's unpredictable when each philosopher 
is going to finish thinking and start 
eating

 We need a solution that works no matter 
what



 Let's say there are SIZE philosophers (and SIZE chopsticks)
 We can create SIZE locks, one for each chopstick
 Then, each philosopher will acquire the lock for her left chopstick 

followed by the lock for her right chopstick
 In the following code, self is the index of the philosopher

void * philosopher (void * _args)
{
struct args *args = (struct args *) _args;
int self = args->self;                    // Philosopher index
int next = (self + 1) % SIZE;
pthread_mutex_lock (args->locks[self]);   // Pick up left chopstick
pthread_mutex_lock (args->locks[next]);   // Pick up right chopstick
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}



 Imagine that every philosopher picks up her left chopstick at the 
same moment

 Now, each will wait for another one to give up what would be their 
right chopstick…forever

 We have the four conditions for deadlock:
 Mutual exclusion: Only one philosopher can hold the lock for a chopstick
 Hold-and-wait: Each philosopher acquires chopstick and tries to get 

another
 No preemption: No philosopher can force another to give up her 

chopstick
 Circular wait: Under the right circumstances, every philosopher can be 

waiting for every other in a circle



 One solution is to add a semaphore initialized to SIZE – 1
 Then, only SIZE – 1 philosophers could try to grab a chopstick

void * philosopher (void * _args)
{

struct args *args = (struct args *) _args;
int self = args->self;                    // Philosopher index
int next = (self + 1) % SIZE;
sem_wait (args->can_eat);                 // Multiplexing semaphore
pthread_mutex_lock (args->locks[self]);   // Pick up left chopstick
pthread_mutex_lock (args->locks[next]);   // Pick up right chopstick
sem_post (args->can_eat);                 // Multiplexing semaphore
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}



 In our example, the philosopher gets the first chopstick and immediately tries to get the 
second

 In real situations, some work might need to get done between acquiring resources
 To avoid delays, it might be desirable to instead get a chopstick and then try to get the 

second, releasing the first if that fails

while (! success)
{

pthread_mutex_lock (args->locks[self]);     // Pick up left chopstick
// Perform some work
// Then, try to get the right chopstick
if (pthread_mutex_trylock (args->locks[next]) != 0)

{
// Undo current progress
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick

}
else

success = true;
}



 We can break the circular wait condition with a clever ordering
 If every philosopher picks up her left chopstick at the same time, we're stuck
 But what if exactly one picked up her right chopstick first?
 Deadlock would become impossible!

void * philosopher (void * _args)
{

struct args *args = (struct args *) _args;
int self = args->self;                    // Philosopher index
int next = (self + 1) % SIZE;
if (self > next) swap (&self, &next);     // Last philosopher swaps order
pthread_mutex_lock (args->locks[self]);   // Pick up left chopstick
pthread_mutex_lock (args->locks[next]);   // Pick up right chopstick
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}





 Although a lot of computation involves both parallelism and 
concurrency, they're two different things

 Concurrency means that tasks can interact with each other
 Parallelism means that two tasks are running at the same time
 You can have concurrency without parallelism
 Example: A multi-threaded program on a single-core system, which can 

still have race conditions
 You can have parallelism without concurrency
 Example: Programs running on separate cores or processors that are 

computing part of a larger answer without coordination



 There are two fundamental kinds of parallelism that are 
possible

 Task parallelism
 Breaking up a problem into subtasks that can be run in parallel
 Example: Alice cooks dinner, Bob cleans the house, and Catherine 

gets vengeance on their enemies
 Data parallelism
 Doing the same tasks in parallel but on different data
 Alice, Bob, and Catherine each chop up 1/3 of the total amount of 

carrots for a soup



 The easiest kind of problems to parallelize are called 
embarrassingly parallel
 Maybe there are many unrelated tasks that all need to get done
 Maybe there's lots of data to process, and no coordination is necessary to 

process it
 The following code shows an embarrassingly parallel problem, 

since initializing the array could easily be divided up among many 
tasks

for (int i = 0; i < 100000000; ++i)
array[i] = i * i;



 Algorithms themselves can suggest approaches for 
parallelism

 Divide-and-conquer algorithms divide problems into parts, 
find answers for the sub-problems, and then combine those 
answers into an overall solution
 Quicksort partitions into two subarrays and then recursively sorts
 Merge sort also divides and recursively sorts

 As discussed in COMP 4500, many important algorithms have 
a divide-and-conquer shape, and it's often possible to let each 
divided task be handled by a separate thread



 The idea of a pipeline is to divide a task into independent 
steps, each of which can be performed by dedicated hardware 
or software

 Example RISC pipeline:
1. Instruction fetch
2. Decode
3. Execute
4. Memory Access
5. Writeback



 The fork/join pattern uses a main thread that spawns additional threads 
when there are parallel tasks to be done

 After those tasks complete, the main thread joins the spawned threads
 A fork/join pattern could be used for either task parallelization or data 

parallelization



 Map/reduce is similar to fork/join
 The biggest difference is a philosophical 

one about how the work is described
 Map/reduce has two stages:
 Map applies a function to each piece of input 

data
 Reduce combines the results to get a final 

answer
 Map/reduce is commonly used on 

clusters and distributed systems
 The open source Apache Hadoop is a popular 

tool for map/reduce computing



 The manager/worker thread pattern is commonly used with task parallelism
 Independent tasks are given to work threads that communicate with a central 

management thread
 Event handling, for example, can be viewed as manager/worker
 Workers can also wait for a data value to change from NULL, as in the code below

void * worker (struct args * _args)
{
struct args *args = (struct args *) _args;
pthread_mutex_lock (args->lock);
while (true)
{
while (args->data == NULL) // Wait for data
pthread_cond_wait (args->data_received, args->lock);

if (! args->running) pthread_exit (NULL);
// Process data

}
}



 Rather than worrying about creating too many threads initially or dynamically creating 
threads, one approach is a thread pool
 A thread pool is a fixed number of threads with a queue of tasks
 When a thread finishes its work, it can dequeue a new task

 Thread pools advantages:
 The cost of creating threads is only paid once
 Resource consumption is more predictable because there won't suddenly be a lot more threads
 Each thread self-manages the load by getting more work when it finishes

 Thread pools disadvantages:
 Cache performance can be poor because there's no coordination between which thread is doing 

what
 Crashes and errors can be hard to recover from since we won't know which thread was doing the 

thing that failed
 Managing the task queue requires synchronization that could slow things down 





 Speedup is how much faster a parallel solution is compared to 
a sequential one

 The formula is 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the amount of time the sequential solution takes

 𝑇𝑇𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the amount of time the parallel solution takes
 Thus, if a sequential solution to a problem takes 100 seconds, 

and the parallel solution takes 50 seconds, the speedup is 2



 What if you had 16 cores?  Or 1,000 cores?  Or a million?
 How much speedup can you get?
 Some part of the program has to be executed sequentially
 Reading input
 Starting threads
 Combining results

 Amdahl's law says that the maximum speedup possible is 1
1−𝑝𝑝 +𝑝𝑝𝑁𝑁

 𝑝𝑝 is the fraction of a program that can be parallel
 𝑁𝑁 is the number of processors



 What if we had unlimited cores?
 We can take the equation 1

1−𝑝𝑝 +𝑝𝑝𝑁𝑁
and plug in ∞ for 𝑁𝑁

 Doing so would mean, even with infinite cores, we could never 
have better speedup than 1

1−𝑝𝑝
 Let's say that 90% of a program can be parallelized
 What's the maximum possible speedup you can get?
 𝑆𝑆 = 1

1−𝑝𝑝
= 1

1−.9
= 1

.1
= 10





 When working on a single computer, there's only one clock
 Thus, multiple threads can use this clock to record events in a 

mutually consistent way
 Like adding timestamps to log files

 Distributed systems don't have a single, reliable clock
 Each computer might have a slightly (or completely) different time
 Clocks on each computer drift with respect to each other
 These problems get worse as distance (and network delays) increase



 We can synchronize clocks based on a centralized server
 A problem is that the time a message takes in the network is 

unpredictable
 Network Time Protocol (NTP) is a protocol to do this:
 Client sends a message at T1
 Server receives the message at T2
 Server replies at T3
 Client receives the message at T4

 Offset = 𝑇𝑇2−𝑇𝑇1 +(𝑇𝑇3−𝑇𝑇4)
2

 The offset is a measurement of the difference in times between the 
client and server

 Delay = 𝑇𝑇4 − 𝑇𝑇1 − (𝑇𝑇3 − 𝑇𝑇2)
 The delay is a measurement of how long it takes for the messages to 

make a round trip
 Algorithms process a number of offset and delay values to try to 

find the most accurate offset



 Logical clocks are an alternative to using exact times, using 
messages to track the order of events

 Lamport timestamps are a way to implement logical clocks
 Each process keeps an internal counter of events that it sees
 When a local event occurs, the counter is incremented
 When a process sends or receives a message, it increments its 

counter
 Messages have timestamps
 When a process receives a message, it updates its internal counter to 

the message's timestamp if that timestamp is larger



 Lamport timestamps only give indirect 
information about the state of other 
processes

 Vector clocks extend the idea of 
Lamport timestamps by making every 
process keep a counter for every 
process

 When a message from one process 
arrives, the receiving process can 
update all of its counters based on 
whatever is larger

 Vector clocks give much more 
information about how many events 
have been experienced by other 
processes





 If you want to get a file from a web server, you can go to a URL 
and make an HTTP request

 Unfortunately, if that server is down or unreachable, you can't get 
the file

 For this reason, distributed systems are often used to store data
 A key feature of distributed data storage is replication, keeping 

multiple copies of the same data
 Replication avoids a single point of failure
 If done correctly, replication can also do load balancing, improving 

performance by providing multiple sources for data



 The Google File System (GFS) is a distributed storage system
 GFS was designed to store Google's internal data, like the 

data structures used for PageRank
 Files are often large, so they're broken into chunks
 Chunks are stored on chunkservers as regular files
 A master server stores a table mapping files chunks to their 

locations



 GFS was designed by Google for its own purposes
 It uses a central server
 Servers keep information about each other

 What if we have no idea what servers are going to be in the 
network?

 Distributed hash tables (DHT) are an approach for mapping 
arbitrary objects to arbitrary servers

 DHTs are a way to organize a peer-to-peer network to avoid 
query flooding



 Chord was one of the first algorithms for a DHT, 
introduced in 2001

 Each node has a unique identifier (often its IP 
address) that's hashed to provide a location in a 
circle
 If the hash is n bits long, the DHT can support up to 

2n nodes
 Most locations in the circle are empty
 Each node has a "finger table," tracking 

successor elements in increasing powers of 2 
away on the circle
 If the power of 2 node is missing, it tracks the next 

non-missing node
 The example on the right is only for 25 = 32 

nodes



 When a file is added, it's hashed
 Whichever node has that hash value  (or is its 

successor) is the location of that file
 On the right, node 6 is looking for a file at location 

19 (the successor of 18)
 It looks at 6 + 8 = 14, which doesn't exist but has a 

successor of 16
 Then it looks at 16 + 2 = 18, which doesn't exist but 

has a successor of 21
 Node 21 is where the file is supposed to be

 The details get a little more complex, but the 
practical result is that a file can be found with 
O(log n) requests, where n is the size of the 
network

 Replication is done by caching files at nodes that 
were part of the lookup to find the file





 Reaching consensus is the goal of many distributed protocols
 To reach consensus, a protocol must have three properties:
 Termination: Every correct (non-failing) process will eventually decide on 

a value
 Integrity: If every correct process proposes the same value, any correct 

process must decide that value
 Agreement: All correct processes decide the same value

 Examples
 In GFS, a consensus protocol could tell any node whether a particular file 

was on a particular node
 In NTP, nodes will be able to agree on synchronized time



 However, processes do fail in distributed systems
 Failure could mean making some error, crashing, going into 

an infinite loop, or losing connection to the network
 Processes could even be malicious, trying to undermine the system

 Even in the face of (many?) failures, we'd like the distributed 
system to reach consensus

 A common analogy used to describe this problem is the 
Byzantine generals problem



 A version of the Byzantine generals problem imagines:
 One general is the commander who decides what to do
 The other two are lieutenants who check with each other to make 

sure that they got the same message from the commander
 What if there's one bad general?
 A bad commander could send retreat to one lieutenant and attack to 

the other
 A bad lieutenant could receive attack from the commander but send 

retreat to the other lieutenant
 A good lieutenant couldn't distinguish between those two situations



 Consensus is hard
 Failing processes can mess things up for correct processes
 Because there's limited information, a process can appear to be 

correct to one part of the system and failing to another
 A Byzantine failure is exactly this kind
 There's conflicting information, and it's impossible to determine 

what's reliable



 It's not an accident that the number of 
generals chosen is three

 If strictly less than 1/3 of the nodes are 
failing, it's possible to achieve consensus

 If we extend the problem to four generals 
(three lieutenants), then generals who are 
working can decide on a consensus using 
majority rule

 Even a bad commander who issues 
confusing orders won't mess up the system

 However, knowing what the consensus is 
doesn't tell us which nodes are failing

 Also, this 1/3 limit depends on synchronous 
communication



 Blockchains are a form of distributed ledger
 Unlike banks, which are centralized authorities for transactions 

that have occurred at the banks, blockchains try to record 
transactions in a distributed way with no central authority

 Although similar ideas existed before, blockchains as we know 
them were invented by Satoshi Nakamoto (real identity unknown) 
in 2008

 The original blockchain idea was intended to keep track of bitcoin 
transactions

 Now, most cryptocurrencies use some form of blockchain to track 
transactions



 Blockchains are distributed systems that can be used to 
record almost anything

 But their use has been dominated by cryptocurrency
 A central problem that any digital money faces is double-

spending
 What stops someone from spending a digital token more than once?

 Transactions are recorded in blockchains
 Two competing blockchains could record different 

transactions, but the longer chain is considered the valid one



 Blockchains are built by recording transactions along with other 
data that hashes in a specified pattern
 Usually, a hash value with a certain number of zeroes at the beginning

 It's easy to check that the transaction has the right hash value
 But it's computationally difficult to generate data that has a hash 

with a certain number of zeroes at the beginning
 And that's what mining is: Trying random strings until something 

has the right hash value
 Since a large number of strings will have the right hash value, an 

entity with more than 50% of the computational power working 
on a blockchain network could outpace everyone else writing 
transactions, taking control of it





 String manipulation is annoying but necessary in C
 You should be able to use the following functions:

 char *strcat(char *dest, const char *src)
▪ Appends the string src to the end of the string pointed dest

 char *strncat(char *dest, const char 
*src, size_t n)
▪ Appends the string src to the end of the string dest, up to n 

characters
 char *strchr(const char *str, int c)

▪ Searches for the first occurrence of the character c (an unsigned 
char) in the string str

 int strcmp(const char *str1, const char 
*str2)
▪ Compares strings str1 and str2

 int strncmp(const char *str1, const char 
*str2, size_t n)
▪ Compares at most the first n bytes of strings str1 and str2

 char *strcpy(char *dest, const char *src)
▪ Copies the string src into dest

 char *strncpy(char *dest, const char 
*src, size_t n)
▪ Copies up to n characters from the string src into dest

 size_t strlen(const char *str)
▪ Computes the length of the string str

 char *strstr(const char *haystack, const 
char *needle)
▪ Finds the first occurrence of string needle in the string 

haystack

 char *strtok(char *str, const char 
*delim)
▪ Breaks string str into a series of tokens separated by delim



 File I/O is the key abstraction for all I/O in Linux
 So you should be able to use the following functions:
 int open (char *path, int flags, int perms)

▪ Open the file specified by path
▪ Possible flags: O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, O_APPEND, O_TRUNC
▪ Permissions: Only needed when creating a file, and octal values are the easiest

 int close(int fd)
▪ Close the file given by file descriptor fd

 int read (int fd, char *buffer, int size)
▪ Read from file descriptor fd into buffer a maximum of size bytes
▪ Returns the number of bytes successfully read

 int write(int fd, char *buffer, int size)
▪ Write from buffer into file descriptor fd a maximum of size bytes
▪ Returns the number of bytes successfully written



 You should know these pretty well:
 pid_t fork (void)

▪ Fork a new version of the current process at exactly the same point in the program
 int execl(char *path, char *arg0, ..., NULL)
 int execle(char *path, char *arg0, ..., NULL, char* envp[])
 int execlp(char *file, char *arg0, ..., NULL)
 int execv(char *path, char *argv[])
 int execve(char *path, char *argv[], char *envp[])
 int execvp(char *file, char *argv[])

▪ Execute a process (replacing the current process) with the given arguments and environment variables
 pid_t wait(int *stat_loc)

▪ Wait for all child processes to finish
 int pipe(int pipefd[2])

▪ Create a pipe where pipefd[0] is the reading end of the pipe and pipefd[1] is the writing end
 int dup2(int actual, int replaced)

▪ All reads from and writes to replacedwill actually be read from or written to actual



 You don't need to have these functions memorized, but you should be familiar enough to 
read them in code and understand them
 int socket (int domain, int type, int protocol)

▪ Create a socket, which will work like a file descriptor
 int bind (int socket, const struct sockaddr *address, socklen_t
address_len)
▪ Bind the socket to a port

 int listen (int socket, int backlog)
▪ Set up the socket for listening

 int accept (int socket, struct sockaddr *address, socklen_t
*address_len)
▪ Accept an incoming connection

 int connect (int socket, const struct sockaddr *address, socklen_t
address_len)
▪ Connect to a listening socket



 You don't need to have these functions memorized, but you 
should be familiar enough to read them in code and understand 
them:
 int pthread_create (pthread_t *thread, const 
pthread_attr_t *attr, void(*start_routine)(void*), 
void *arg)
▪ Create a new thread

 void pthread_exit (void *value_ptr)
▪ Exit from the current thread, possibly returning a result

 void pthread_join (pthread_t thread, void 
*value_ptr)
▪ Wait for a thread to end (getting a pointer to its result, if any)



 You don't need to have these functions memorized, but you should be familiar enough to read 
them in code and understand them:
 sem_t *sem_open (const char *name, int flag,

/* mode_t mode, unsigned int value */ )
▪ Return (and possibly create) a named semaphore, using the usual flag and mode constants
▪ value determines the initial value of the semaphore (often 0)

 int sem_wait (sem_t *sem)
▪ Block if the semaphore's value is 0, decrement after continuing

 int sem_post (sem_t *sem)
▪ Increment the semaphore's value, unblocking a process if the value is 0

 int pthread_mutex_init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

▪ Create a mutex with the specified attributes
 int pthread_mutex_lock (pthread_mutex_t *mutex)

▪ Acquire a mutex, blocking until you succeed
 int pthread_mutex_unlock (pthread_mutex_t *mutex)

▪ Release the mutex





 There is no next time!



 Finish Assignment 8
 Due tonight before midnight!

 Study for the final exam:
 Wednesday, April 30, 2025
 8:00 – 10:00 a.m.
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